4184 independent reflections

3 standard reflections

frequency: 120 min

intensity decay: none

 $R_{\rm int} = 0.044$

1674 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Carboxy-5-(trifluoromethyl)phenyl acetate

Ren Zhang,^{a,b} Dan Wang,^b Chunmei Ma^b and Zhenjiang Li^c*

^aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, No.5 Xinmofan Road, Nanjing 210009, People's Republic of China, ^bBioengineering Department, Xuzhou Higher Vocational College of Bioengineering, Mine West Road, Xuzhou 221006, People's Republic of China, and College of Life Sciences and Pharmaceutical Engineering, Nanjing University of Technology, No.5 Xinmofan Road, Nanjing 210009, People's Republic of China Correspondence e-mail: zjli@njut.edu.cn

Received 30 October 2007; accepted 1 November 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; disorder in main residue; R factor = 0.070; wR factor = 0.206; data-to-parameter ratio = 12.5.

The asymmetric unit of the title compound, $C_{10}H_7F_3O_4$, contains two independent molecules. In one of the molecules, the F atoms of the rifluoromethyl group are disordered over two positions with site occupation factors 0.231 (11)/ 0.769 (11). The intramolecular $C-H \cdots O$ hydrogen bond results in the formation of a planar five-membered ring, which is oriented at a dihedral angle of $4.24(3)^{\circ}$ with respect to the six-membered ring. In the crystal structure, C-H···F and O- $H \cdots O$ hydrogen bonds link the molecules.

Related literature

For related literature, see: Nakagawa et al. (1996); Wang et al. (1999). For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

N a

h

•	
$C_{10}H_7F_3O_4$	V = 2144.9 (8) Å ³
$A_r = 248.16$	Z = 8
Aonoclinic, $P2_1/n$	Mo $K\alpha$ radiation
= 14.558 (3) Å	$\mu = 0.15 \text{ mm}^{-1}$
$P = 5.7520 (12) \text{\AA}$	T = 298 (2) K
= 26.243 (5) Å	$0.40 \times 0.10 \times 0.10$ mm
$B = 102.56 \ (3)^{\circ}$	

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.942, \ T_{\max} = 0.985$ 4356 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.070$	335 parameters
$wR(F^2) = 0.206$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
4184 reflections	$\Delta \rho_{\rm min} = -0.19 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond	geometry	(Å,	°).
---------------	----------	-----	-----

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1-H1A\cdots O6$	0.82	1.81	2.631 (7)	174
$O5-H5A\cdots O2$	0.82	1.83	2.646 (7)	172
$C7 - H7A \cdots O1$	0.93	2.39	2.721 (7)	101
$C13-H13A\cdots F2^{i}$	0.93	2.55	3.313 (7)	140

Symmetry code: (i) -x + 2, -y, -z.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Siemens, 1996); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2360).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara,
- N. (1996). J. Pestic. Sci. 21, 195-201. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-
- 359 Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of
- Göttingen, Germany.
- Siemens (1996). SHELXTL. Version 5.06. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ. 20, 1903-1905.

Acta Cryst. (2007). E63, o4609 [doi:10.1107/S1600536807055171]

2-Carboxy-5-(trifluoromethyl)phenyl acetate

R. Zhang, D. Wang, C. Ma and Z. Li

Comment

Benzoic acid derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa *et al.*, 1996; Wang *et al.*, 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal and fungicidal activities (Wang *et al.*, 1999). We report herein the crystal structure of the title compound, (I).

The asymmetric unit of the title compound, (I), contains two independent molecules, in which the bond lengths and angles are within normal ranges (Allen *et al.*, 1987).

When the crystal structure was solved, the atoms F4, F5 and F6 were found to be disordered.

The intramolecular C—H···O hydrogen bond (Table 1) results in the formation of the planar five-membered ring; A (O1/C1/C2/C7/H7A), which is oriented with respect to ring B (C2—C7) at a dihedral angle of 4.24 (3)°.

In the crystal structure, C—H…F and O—H…O hydrogen bonds (Table 1) link the molecules, in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, 2-Hydroxy-4-trifluoromethylbenzoic acid (0.62 g, 2 mmol) and acetyl chloride (0.69 g, 5 mmol) were added in a flask (25 ml) and reacted in an oil bath (363 K) for 6 h. After cooling and filtering, crude compound, (I) was obtained. Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an acetone solution (m.p. 480 K).

Refinement

When the crystal structure was solved, the atoms F4, F5 and F6 were found to be disordered. During refinement with anisotropic thermal parameters, the occupancies of disordered F atoms were refined as F4 = 0.769 (11), F4' = 0.231 (11), F5 = 0.769 (11), F5' = 0.231 (11), F6 = 0.769 (11) and F6' = 0.231 (11). H atoms were positioned geometrically with O—H = 0.82 Å (for OH) and C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O)$, where x = 1.2 for aromatic H and x = 1.5 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed lines.

2-Carboxy-5-(trifluoromethyl)phenyl acetate

Crystal data	
$C_{10}H_{7}F_{3}O_{4}$	$F_{000} = 1008$
$M_r = 248.16$	$D_{\rm x} = 1.537 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 480 K
Hall symbol: -P 2yn	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
a = 14.558 (3) Å	Cell parameters from 25 reflections
b = 5.7520 (12) Å	$\theta = 9 - 12^{\circ}$
c = 26.243 (5) Å	$\mu = 0.15 \text{ mm}^{-1}$
$\beta = 102.56 \ (3)^{\circ}$	T = 298 (2) K
V = 2144.9 (8) Å ³	Block, colorless
Z = 8	$0.40\times0.10\times0.10~mm$

Data collection

Nonius CAD-4 diffractometer	$R_{\text{int}} = 0.044$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 26.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.5^{\circ}$
T = 298(2) K	$h = -17 \rightarrow 17$
$\omega/2\theta$ scans	$k = 0 \rightarrow 7$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 32$
$T_{\min} = 0.942, \ T_{\max} = 0.985$	3 standard reflections
4356 measured reflections	every 120 min
4184 independent reflections	intensity decay: none
1674 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites

 $R[F^2 > 2\sigma(F^2)] = 0.070$ H-atom parameters constrained $w = 1/[\sigma^2(F_0^2) + (0.060P)^2 + 1.5P]$ $wR(F^2) = 0.206$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$ S = 1.02 $\Delta \rho_{\text{max}} = 0.21 \text{ e} \text{ Å}^{-3}$ 4184 reflections $\Delta \rho_{\rm min} = -0.19 \ {\rm e} \ {\rm \AA}^{-3}$ 335 parameters Primary atom site location: structure-invariant direct

methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates a	and isotropic or e	equivalent isotropic	displacement	parameters	$(Å^2)$
	1	1 1		1	< /

	x	У	z	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
01	0.9999 (3)	-0.2926 (8)	0.04713 (16)	0.1174 (15)	
H1A	1.0431	-0.3851	0.0565	0.176*	
02	0.9372 (3)	-0.4915 (8)	0.10301 (17)	0.1049 (13)	
O3	0.8243 (4)	-0.1993 (9)	0.17950 (19)	0.1314 (18)	
O4	0.7574 (2)	-0.3920 (7)	0.10665 (16)	0.0890 (11)	
F1	0.5505 (3)	0.1828 (7)	-0.02489 (16)	0.1326 (14)	
F2	0.6350 (2)	0.4848 (6)	-0.00741 (15)	0.1153 (12)	
F3	0.5733 (2)	0.3315 (6)	0.05013 (14)	0.1173 (12)	
C1	0.9332 (4)	-0.3349 (10)	0.0722 (2)	0.0842 (16)	
C2	0.8526 (4)	-0.1699 (9)	0.0581 (2)	0.0782 (15)	
C3	0.7697 (3)	-0.2003 (9)	0.0766 (2)	0.0748 (14)	
C4	0.6952 (4)	-0.0522 (9)	0.0618 (2)	0.0778 (15)	
H4A	0.6411	-0.0746	0.0746	0.093*	
C5	0.6992 (3)	0.1293 (9)	0.02827 (19)	0.0695 (13)	
C6	0.7798 (4)	0.1678 (10)	0.0096 (2)	0.0853 (16)	
H6A	0.7840	0.2924	-0.0124	0.102*	
C7	0.8543 (4)	0.0139 (10)	0.0247 (2)	0.0841 (16)	
H7A	0.9080	0.0361	0.0116	0.101*	
C8	0.7885 (4)	-0.3724 (13)	0.1602 (3)	0.0923 (18)	
С9	0.7701 (5)	-0.5929 (12)	0.1860 (3)	0.136 (3)	
H9A	0.7920	-0.5783	0.2231	0.204*	
H9B	0.8028	-0.7182	0.1735	0.204*	
Н9С	0.7038	-0.6245	0.1780	0.204*	
C10	0.6158 (4)	0.2812 (11)	0.0115 (2)	0.0836 (15)	

O5	1.0815 (3)	-0.7810 (7)	0.12631 (17)	0.1112 (14)	
H5A	1.0396	-0.6846	0.1175	0.167*	
O6	1.1450 (3)	-0.5743 (7)	0.07251 (16)	0.1043 (13)	
07	1.2003 (3)	-0.9896 (9)	0.23943 (17)	0.1168 (16)	
08	1.1704 (2)	-1.1778 (6)	0.16344 (13)	0.0803 (10)	
F4	1.5198 (4)	-1.2824 (17)	0.2164 (3)	0.135 (3)	0.769 (11)
F5	1.5193 (5)	-1.3647 (14)	0.1369 (3)	0.150 (3)	0.769 (11)
F6	1.5774 (4)	-1.0544 (13)	0.1709 (4)	0.141 (3)	0.769 (11)
F4'	1.4989 (14)	-1.428 (4)	0.1841 (11)	0.126 (7)	0.231 (11)
F5'	1.5587 (15)	-1.187 (5)	0.1397 (8)	0.114 (7)	0.231 (11)
F6'	1.5503 (15)	-1.089 (4)	0.2094 (9)	0.122 (7)	0.231 (11)
C11	1.1474 (4)	-0.7344 (10)	0.1058 (2)	0.0805 (15)	
C12	1.2380 (3)	-0.8623 (10)	0.1208 (2)	0.0761 (14)	
C13	1.3175 (4)	-0.7777 (10)	0.1073 (2)	0.0881 (16)	
H13A	1.3125	-0.6433	0.0871	0.106*	
C14	1.4036 (4)	-0.8814 (10)	0.1219 (2)	0.0833 (16)	
H14A	1.4560	-0.8176	0.1123	0.100*	
C15	1.4113 (4)	-1.0808 (10)	0.1510 (2)	0.0814 (15)	
C16	1.3343 (3)	-1.1774 (9)	0.1659 (2)	0.0803 (15)	
H16A	1.3406	-1.3119	0.1860	0.096*	
C17	1.2476 (4)	-1.0697 (9)	0.15023 (19)	0.0717 (14)	
C18	1.1530 (4)	-1.1230 (12)	0.2111 (2)	0.0838 (16)	
C19	1.0710 (4)	-1.2563 (13)	0.2207 (2)	0.117 (2)	
H19A	1.0596	-1.2147	0.2542	0.175*	
H19B	1.0841	-1.4198	0.2201	0.175*	
H19C	1.0165	-1.2206	0.1940	0.175*	
C20	1.5044 (4)	-1.2004 (14)	0.1687 (3)	0.0947 (18)	

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.098 (3)	0.131 (4)	0.135 (3)	0.048 (3)	0.049 (2)	0.038 (3)
O2	0.094 (3)	0.093 (3)	0.133 (3)	0.025 (2)	0.037 (2)	0.027 (3)
O3	0.174 (5)	0.102 (4)	0.113 (4)	-0.014 (4)	0.021 (3)	0.001 (3)
O4	0.088 (2)	0.073 (3)	0.107 (3)	0.005 (2)	0.022 (2)	0.018 (2)
F1	0.105 (2)	0.119 (3)	0.155 (3)	0.014 (2)	-0.012 (2)	-0.020(3)
F2	0.108 (2)	0.093 (2)	0.153 (3)	0.024 (2)	0.045 (2)	0.035 (2)
F3	0.111 (2)	0.127 (3)	0.128 (3)	0.042 (2)	0.057 (2)	0.011 (2)
C1	0.078 (3)	0.081 (4)	0.096 (4)	0.019 (3)	0.024 (3)	0.006 (3)
C2	0.082 (3)	0.054 (3)	0.103 (4)	0.014 (3)	0.029 (3)	0.001 (3)
C3	0.068 (3)	0.066 (4)	0.092 (4)	0.009 (3)	0.019 (3)	0.000 (3)
C4	0.081 (3)	0.072 (4)	0.089 (4)	0.005 (3)	0.037 (3)	0.005 (3)
C5	0.065 (3)	0.067 (3)	0.078 (3)	0.010 (3)	0.020 (3)	0.001 (3)
C6	0.088 (4)	0.078 (4)	0.096 (4)	0.019 (3)	0.034 (3)	0.016 (3)
C7	0.079 (3)	0.083 (4)	0.097 (4)	0.011 (3)	0.033 (3)	0.006 (3)
C8	0.084 (4)	0.094 (4)	0.098 (5)	0.011 (3)	0.016 (3)	0.026 (4)
C9	0.151 (6)	0.120 (5)	0.135 (5)	-0.004 (5)	0.027 (4)	0.047 (4)
C10	0.085 (4)	0.074 (4)	0.095 (4)	0.013 (3)	0.025 (3)	0.011 (3)

O5	0.090 (3)	0.104 (3)	0.152 (3)	0.027 (2)	0.053 (2)	0.039 (3)
O6	0.111 (3)	0.103 (3)	0.112 (3)	0.037 (2)	0.051 (2)	0.030 (3)
O7	0.114 (3)	0.140 (4)	0.111 (3)	-0.026 (3)	0.055 (3)	-0.048 (3)
08	0.078 (2)	0.084 (3)	0.083 (2)	0.002 (2)	0.0255 (18)	0.002 (2)
F4	0.097 (4)	0.185 (7)	0.125 (4)	0.031 (4)	0.027 (3)	0.059 (4)
F5	0.140 (5)	0.136 (5)	0.166 (5)	0.060 (4)	0.014 (4)	-0.038 (4)
F6	0.087 (3)	0.142 (5)	0.194 (7)	-0.014 (3)	0.034 (4)	0.013 (5)
F4'	0.124 (10)	0.109 (8)	0.146 (12)	0.006 (8)	0.029 (8)	0.009 (8)
F5'	0.100 (9)	0.139 (12)	0.111 (10)	0.027 (8)	0.038 (7)	0.006 (8)
F6'	0.117 (10)	0.129 (10)	0.117 (10)	0.013 (8)	0.016 (7)	-0.017 (8)
C11	0.085 (3)	0.077 (4)	0.086 (4)	0.016 (3)	0.032 (3)	0.009 (3)
C12	0.074 (3)	0.081 (4)	0.080 (3)	0.011 (3)	0.031 (3)	0.004 (3)
C13	0.091 (4)	0.080 (4)	0.100 (4)	0.023 (3)	0.036 (3)	0.021 (3)
C14	0.078 (3)	0.085 (4)	0.095 (4)	0.002 (3)	0.037 (3)	0.011 (3)
C15	0.082 (4)	0.080 (4)	0.089 (4)	0.020 (3)	0.035 (3)	0.010 (3)
C16	0.078 (3)	0.074 (4)	0.094 (4)	0.011 (3)	0.029 (3)	0.007 (3)
C17	0.076 (3)	0.073 (4)	0.070 (3)	0.000 (3)	0.023 (3)	0.001 (3)
C18	0.078 (3)	0.094 (4)	0.084 (4)	0.015 (3)	0.029 (3)	-0.006 (3)
C19	0.106 (4)	0.138 (5)	0.120 (5)	-0.015 (4)	0.053 (4)	0.002 (4)
C20	0.077 (4)	0.113 (5)	0.097 (4)	0.003 (4)	0.023 (3)	0.009 (4)

Geometric parameters (Å, °)

O1—C1	1.309 (6)	O6—C11	1.264 (6)
O1—H1A	0.8200	O7—C18	1.181 (6)
O2—C1	1.203 (5)	O8—C18	1.364 (6)
O3—C8	1.185 (7)	O8—C17	1.393 (5)
O4—C8	1.385 (7)	F4—C20	1.310 (8)
O4—C3	1.389 (6)	F5—C20	1.310 (9)
F1-C10	1.320 (6)	F6—C20	1.347 (9)
F2—C10	1.326 (6)	F4'—C20	1.38 (2)
F3—C10	1.328 (6)	F5'—C20	1.213 (19)
C1—C2	1.492 (7)	F6'—C20	1.298 (19)
C2—C7	1.377 (7)	C11—C12	1.487 (7)
C2—C3	1.407 (6)	C12—C13	1.371 (7)
C3—C4	1.368 (6)	C12—C17	1.412 (7)
C4—C5	1.376 (6)	C13—C14	1.365 (7)
C4—H4A	0.9300	С13—Н13А	0.9300
C5—C6	1.385 (6)	C14—C15	1.369 (7)
C5—C10	1.483 (7)	C14—H14A	0.9300
C6—C7	1.389 (7)	C15—C16	1.381 (6)
С6—Н6А	0.9300	C15—C20	1.501 (8)
С7—Н7А	0.9300	C16—C17	1.386 (6)
C8—C9	1.489 (8)	C16—H16A	0.9300
С9—Н9А	0.9600	C18—C19	1.486 (8)
С9—Н9В	0.9600	С19—Н19А	0.9600
С9—Н9С	0.9600	С19—Н19В	0.9600
O5—C11	1.227 (5)	С19—Н19С	0.9600
O5—H5A	0.8200		

C1—O1—H1A	109.5	C14—C13—C12	123.1 (5)
C8—O4—C3	117.2 (5)	C14—C13—H13A	118.4
O2—C1—O1	123.0 (5)	С12—С13—Н13А	118.4
O2—C1—C2	124.3 (5)	C13—C14—C15	118.8 (5)
O1—C1—C2	112.7 (5)	C13—C14—H14A	120.6
C7—C2—C3	116.8 (5)	C15—C14—H14A	120.6
C7—C2—C1	121.7 (5)	C14—C15—C16	121.4 (5)
C3—C2—C1	121.5 (5)	C14—C15—C20	121.1 (5)
C4—C3—O4	117.6 (5)	C16—C15—C20	117.5 (5)
C4—C3—C2	120.8 (5)	C15-C16-C17	118.6 (5)
O4—C3—C2	121.4 (5)	C15—C16—H16A	120.7
C3—C4—C5	120.9 (5)	C17—C16—H16A	120.7
C3—C4—H4A	119.6	C16—C17—O8	117.4 (5)
C5—C4—H4A	119.6	C16—C17—C12	121.0 (5)
C4—C5—C6	120.4 (5)	O8—C17—C12	121.6 (5)
C4—C5—C10	119.4 (5)	O7—C18—O8	121.9 (5)
C6—C5—C10	120.2 (5)	O7—C18—C19	127.4 (6)
C5—C6—C7	117.8 (5)	O8—C18—C19	110.6 (6)
С5—С6—Н6А	121.1	С18—С19—Н19А	109.5
С7—С6—Н6А	121.1	C18—C19—H19B	109.5
C2—C7—C6	123.4 (5)	H19A—C19—H19B	109.5
С2—С7—Н7А	118.3	С18—С19—Н19С	109.5
С6—С7—Н7А	118.3	H19A—C19—H19C	109.5
O3—C8—O4	121.2 (6)	H19B—C19—H19C	109.5
O3—C8—C9	128.9 (7)	F5'—C20—F6'	101.2 (16)
O4—C8—C9	109.9 (6)	F5'—C20—F5	54.9 (13)
С8—С9—Н9А	109.5	F6'—C20—F5	138.8 (10)
С8—С9—Н9В	109.5	F5'—C20—F4	128.5 (11)
Н9А—С9—Н9В	109.5	F6'	56.2 (12)
С8—С9—Н9С	109.5	F5—C20—F4	109.4 (8)
Н9А—С9—Н9С	109.5	F5'—C20—F6	51.0 (13)
Н9В—С9—Н9С	109.5	F6'—C20—F6	52.9 (11)
F1—C10—F2	106.6 (5)	F5—C20—F6	103.7 (7)
F1—C10—F3	105.3 (5)	F4—C20—F6	102.4 (7)
F2—C10—F3	105.3 (5)	F5'—C20—F4'	109.3 (16)
F1C10C5	112.1 (5)	F6'—C20—F4'	106.4 (16)
F2—C10—C5	113.9 (5)	F5—C20—F4'	61.9 (11)
F3—C10—C5	112.9 (5)	F4—C20—F4'	52.2 (10)
С11—О5—Н5А	109.5	F6—C20—F4'	132.6 (10)
C18—O8—C17	116.4 (4)	F5'—C20—C15	116.4 (11)
O5—C11—O6	123.7 (5)	F6'—C20—C15	107.3 (11)
O5-C11-C12	120.6 (5)	F5—C20—C15	113.4 (6)
O6—C11—C12	115.6 (5)	F4—C20—C15	114.6 (6)
C13—C12—C17	116.9 (5)	F6—C20—C15	112.2 (6)
C13—C12—C11	120.4 (5)	F4'	114.9 (10)
C17—C12—C11	122.6 (5)		
O2—C1—C2—C7	176.4 (6)	O6—C11—C12—C17	-168.8 (5)
O1—C1—C2—C7	-4.1 (8)	C17—C12—C13—C14	-1.5 (8)
O2—C1—C2—C3	-6.2 (9)	C11—C12—C13—C14	176.9 (5)

O1—C1—C2—C3	173.3 (5)	C12-C13-C14-C15	0.8 (9)
C8—O4—C3—C4	-96.5 (6)	C13-C14-C15-C16	-0.4 (8)
C8—O4—C3—C2	89.1 (6)	C13-C14-C15-C20	-179.3 (6)
C7—C2—C3—C4	-0.1 (8)	C14—C15—C16—C17	0.8 (8)
C1—C2—C3—C4	-177.7 (5)	C20-C15-C16-C17	179.7 (5)
C7—C2—C3—O4	174.1 (5)	C15-C16-C17-O8	176.7 (5)
C1—C2—C3—O4	-3.4 (8)	C15—C16—C17—C12	-1.6 (8)
O4—C3—C4—C5	-174.1 (4)	C18—O8—C17—C16	87.5 (6)
C2—C3—C4—C5	0.3 (8)	C18—O8—C17—C12	-94.3 (6)
C3—C4—C5—C6	-1.1 (8)	C13-C12-C17-C16	1.9 (7)
C3—C4—C5—C10	177.8 (5)	C11-C12-C17-C16	-176.5 (5)
C4—C5—C6—C7	1.8 (8)	C13-C12-C17-O8	-176.3 (5)
C10—C5—C6—C7	-177.1 (5)	C11—C12—C17—O8	5.4 (8)
C3—C2—C7—C6	0.8 (8)	C17—O8—C18—O7	0.7 (8)
C1—C2—C7—C6	178.3 (5)	C17—O8—C18—C19	-178.1 (5)
C5—C6—C7—C2	-1.6 (8)	C14—C15—C20—F5'	-33 (2)
C3—O4—C8—O3	-0.3 (8)	C16—C15—C20—F5'	148.4 (18)
C3—O4—C8—C9	-179.8 (5)	C14—C15—C20—F6'	79.8 (16)
C4C5C10F1	-77.8 (7)	C16—C15—C20—F6'	-99.1 (16)
C6-C5-C10-F1	101.1 (6)	C14—C15—C20—F5	-93.6 (9)
C4—C5—C10—F2	161.1 (5)	C16-C15-C20-F5	87.5 (9)
C6—C5—C10—F2	-20.0 (8)	C14—C15—C20—F4	139.9 (8)
C4—C5—C10—F3	41.0 (7)	C16-C15-C20-F4	-39.1 (10)
C6—C5—C10—F3	-140.1 (5)	C14—C15—C20—F6	23.6 (10)
O5-C11-C12-C13	-165.1 (5)	C16-C15-C20-F6	-155.4 (7)
O6-C11-C12-C13	12.9 (8)	C14—C15—C20—F4'	-162.2 (14)
O5-C11-C12-C17	13.2 (9)	C16—C15—C20—F4'	18.9 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1A···O6	0.82	1.81	2.631 (7)	174
O5—H5A…O2	0.82	1.83	2.646 (7)	172
C7—H7A···O1	0.93	2.39	2.721 (7)	101
C13—H13A···F2 ⁱ	0.93	2.55	3.313 (7)	140
Symmetry codes: (i) $-x+2, -y, -z$.				

